Improved mixed integer linear programing formulations for roman domination problem
نویسندگان
چکیده
منابع مشابه
Improved Mixed Integer Linear Programing Formulations for Roman Domination Problem
The Roman domination problem is considered. An improvement of two existing Integer Linear Programing (ILP) formulations is proposed and a comparison between the old and new ones is given. Correctness proofs show that improved linear programing formulations are equivalent to the existing ones regardless of the variables relaxation and usage of lesser number of constraints.
متن کاملImproved Linear Integer Programming Formulations of Nonlinear Integer Problems*
A variety of combinatorial problems (e.g., in capital budgeting, scheduling, allocation) can be expressed as a linear integer programming problem. However, the standard devices for doing this often produce an inordinate number of variables and constraints, putting the problem beyond the practical reach of available integer programming methods. This paper presents new formulation techniques for ...
متن کاملMixed integer linear programming formulations for probabilistic constraints
We introduce two new formulations for probabilistic constraints based on extended disjunctive formulations. Their strength results from considering multiple rows of the probabilistic constraints together. The properties of the first can be used to construct hierarchies of relaxations for probabilistic constraints, while the second provides computational advantages over other formulations.
متن کاملStrong mixed-integer formulations for the floor layout problem
The floor layout problem (FLP) tasks a designer with positioning a collection of rectangular boxes on a fixed floor in such a way that minimizes total communication costs between the components. While several mixed integer programming (MIP) formulations for this problem have been developed, it remains extremely challenging from a computational perspective. This work takes a systematic approach ...
متن کاملOptimization of Mixed-Integer Non-Linear Electricity Generation Expansion Planning Problem Based on Newly Improved Gravitational Search Algorithm
Electricity demand is forecasted to double in 2035, and it is vital to address the economicsof electrical energy generation for planning purposes. This study aims to examine the applicability ofGravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of themixed-integer non-linear electricity generation expansion planning (GEP) problem. The performanceindex of GEP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications de l'Institut Mathematique
سال: 2016
ISSN: 0350-1302,1820-7405
DOI: 10.2298/pim1613051i